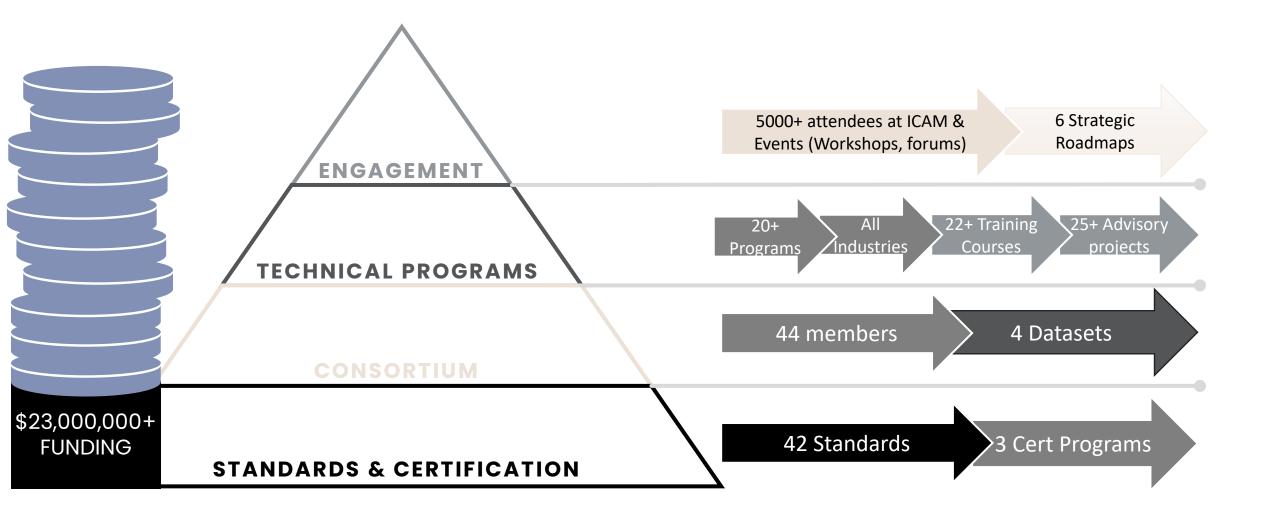


ASTM INTERNATIONAL Additive Manufacturing Center of Excellence

Progress in inspection methods for aerospace and routes to certification Dr. Martin White


Director – Technical Operations, Global Advanced Manufacturing Programs, Bristol UK.

October 1st 2024 Additive Manufacturing for Aerospace, BINDT.

www.amcoe.org

ASTM AMCOE – IMPACT

2

What is the status in the UK currently?

ATI Additive Manufacturing Strategy & Roadmap

10/3/2024

- Roadmap now released:
- Additive-Manufacturing-Strategy-Roadmap-Sept-2024-Final.pdf (ati.org.uk)

Why has this group been brought together?

- Bring together AM experts from the UK aerospace sector in a collaborative forum
- Minimise duplication of effort, address common challenges once for wider benefit
- Create an aligned vision and roadmap for the sector
- Support the update of the ATI aerospace AM technology strategy

This group will be the leadership team – as key industry organisations that represent the primary routes to exploitation

• However, the scope of the group is the end-to-end value chain

• We will need the support of the rest of the UK sector – materials suppliers, machine manufacturers, supply chain organisations etc.

ATI Aerospace AM Roadmap

Main R&D activity, significant and targeted R&D in this timeframe is expected

Transition does not mean a phase out of R&D, however a change of R&D empasis

R&D significantly matured, expect industry lead approach until superseded

Utilising current technology

Improving efficiency of qualification and certification of AM parts for aerospace

Developing a resilient and

cohesive

supply chain

Drastically reducing cost of AM parts

Improving M/C Speed Optimising AM Process Chain **Digital Qualification**

Expand the possible	
application areas for	
utilising AM	
Enabling Technologies	
Novel Materials	

		Develop forums/methods to share collaborative inform	nation and best practice	
Sharing key industrial technology roadmaps & required timescales		Establish specific national interim capacity & cap between development activities & product		-
	to enable prioritisation and gap analysis of UK's AM supply chain	' Establishing long term capability a	and capacity to meet requirements of supply chain	
	Identify AM skills gaps specific to industrial requirements	, Create and deliver training conte ,	ent	
	Develop commercial tool kits that development of business cases f		- 1	E
	Harmonise common requirements across organisations for qualification	Development & dissemination of boot practice of AM end t		
	Access current and non-destructive evalue capabilites against qualification require categorisation of key defects	ments &	Inspection gorize Defects against o	
	Embedding manufacturing l		mework & Evidence dat	

Develop an accessible and standardised material data

Accelerating processing speed of next gen AM process

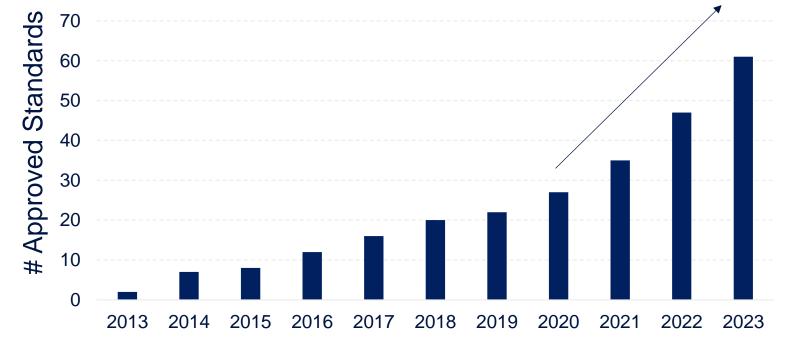
4 Major Strands:

- **Supply Chain**
- Make Q&C easier
- Make it cheaper
- **Expand Applications**

- alification requirements
- base to enable reduced metrology & NDE process steps
- Metrology & NDE for complex and/or large parts

	Optimising and/or eliminati	ng process chain steps		Advanced post-processing capacity	
	Improving resources efficiency (re	ducing scrap feedstock etc.)	Increasing sust	ainability of feedback through novel manufac	turing methods
Establish fundamental process mechanisms to unlcok novel operation and qualification approaches					
Establish digital thr requirements for fu		evelop digital thread tools & showcase exe	mplar use cases	Develop methods to enable rapid quali	fication
	Enable large parts using next g	eneration AM processes		Disruptive approaches to machine platforms	
Accelerate industrial of novel materials that unlock new applications areas in aerosp				Create and industrialise future materials	
2025	2026	2027	2028	2029	2030

The Landscape of Standards


We are Accelerating...

International Standards from ASTM Committee F42/ISO TC261

ASTM CoE Research to Standards

Conducts R&D identified and prioritized by the top minds in the field to significantly accelerate standards development.

© ASTM International

Context – Inspection & Structural Integrity

CENTER of

Manufacturing

We have an extensive toolbox of approaches to support Safe operation

November 2021

Ref Cindy Ashforth, FAA Senior Technical Specialist for Composites. 'Criticality and the Associated Degree of Rigor in Certifying AM Parts', ICAM November 2021

NASA-ASTM Cooperative Agreement

Cooperative Efforts

ADDITIVE MANUFACTURING

Qualification

Design, test, and standardize a qualification schema for laser beam powder bed fusion (PBF-LB).

Defects & Inspection

Define types & sources of process escape in AM, Develop a PFMEA for AM Defects, Probabilistic analysis methods for likelihood of defect occurrence and detection

Technical

Workshop

Monitoring

Assess current status of in-situ monitoring technologies and develop a roadmap for prioritization moving forward.

Targeted Surveys

Expert Interview Brainstorming Sessions

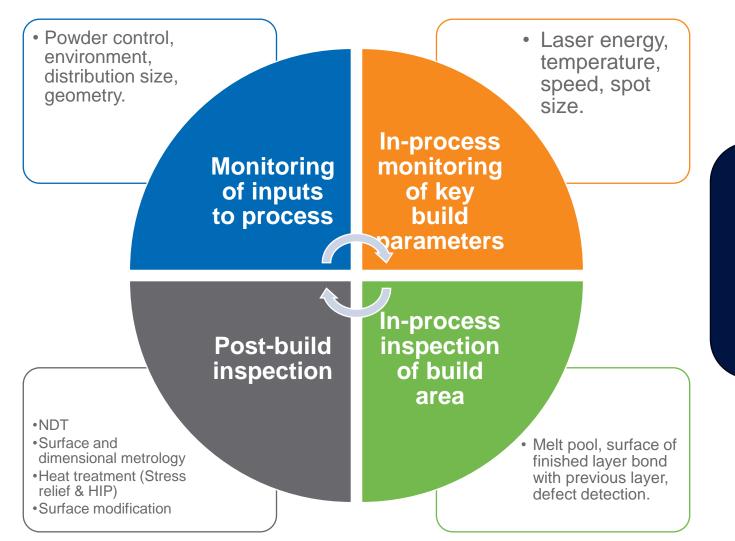
Strategic Guides & Roadmaps

Center of Excellence Strategic Guide: Additive Manufacturing In-Situ Monitoring Technology Readiness Findings and Path Forward for Applications in Qualification and Certification Workshop Contributors (\star) **GE** Aviation BOEING AddUp **America Makes** mtc **GKN AEROSPACE** JOHN DEERE **GE Research** CAK RIDGE SIGMA Raytheon

CENTER of EXCELLENCE

https://amcoe.org/research-development/publications/

Definition – Flaw & Defect Distributions



Flaw Size

CENTER of

Holistic Approach To AM Quality & Inspection

Slide presented by Dr Ben Dutton, MTC at the ICAM 2023 Introduction to Quality Assurance Course

State of the Art & Technical Maturation – In Situ Monitoring

ADDITIVE MANUFACTURING

Three general regimes of ISM in AM Systems

> AM Machine Condition monitoring (system health monitoring)

Melt process monitoring

Deposited Material monitoring

Sensor Technology	1	2	3	4	5 6	7	8	9
Optical Imaging								•
Thermal Imaging						→	•	
Spectrometer					ightarrow			
Thermocouple							igodol	
Displacement Sensors						igodol		
Ultrasonic					→	•		
Eddy Current				ightarrow				
Accelerometer							igodol	
Microphone				ightarrow				
X-Ray (ELO)					→	•		
Neutron Diffraction								

Technology Readiness Level (TRL)

2025 Outlook

Sensor technologies evaluated on ability to replace or reduce ex-situ inspection for critical application

PBF

-Layer Imaging likely to be Standard for detection of recoater or part distortion - In-Situ defect detection is expected with development work

DED

- Auto height control is necessary for normal operation - Methods also implemented for process monitoring with potential for in-situ defect detection

- Increased surface roughness of DED relative to PBF may be a challenge

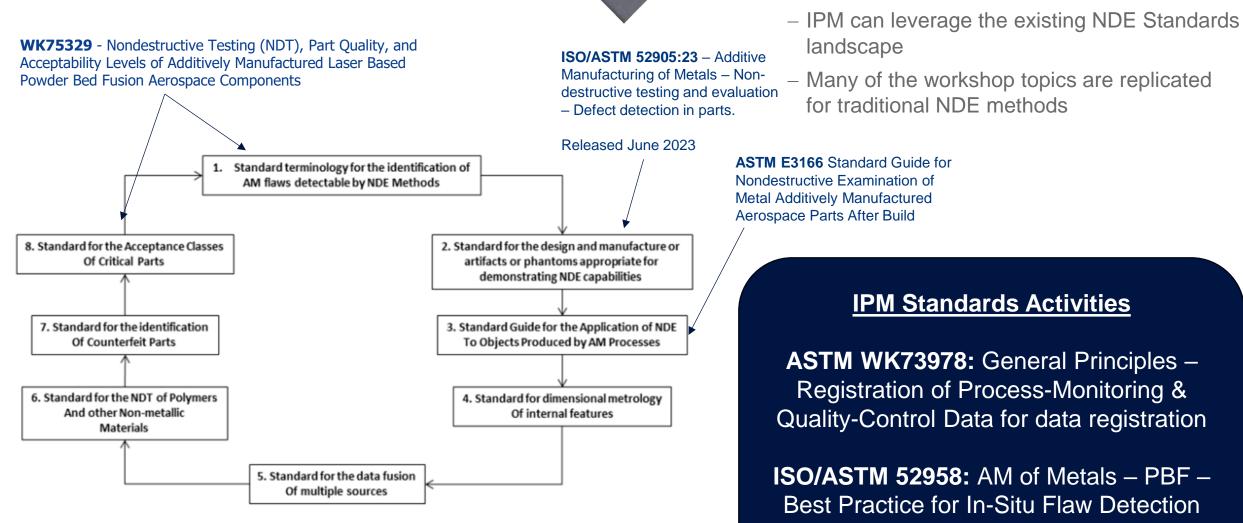
Types of Detectable Defect States

CENTER of

- Limits of Detectability
- Measurement speed is slow
- Cost & Difficult to integrate
- Lack of Causal Correlation
- Sensor Resolution
- Interaction with previous layer
- Registration
- Equipment Access

- Wish List:

- Data Stream to be used to *characterize the severity of the anomaly*
- Defect Library to be developed with size/shape, cause, minimum critical flaw size for each specific size


– What if...

- Defects could be characterized by using 'inferable' rather than 'detectable'?
- Detection intensity was related to the potential size/impact?

Status of Standardisation ('Classic' NDE & IPM)

and Analysis for Laser-based PB

Taken from AMSC roadmap Gap report

Inspection Acceptance Criteria

• WK 75329

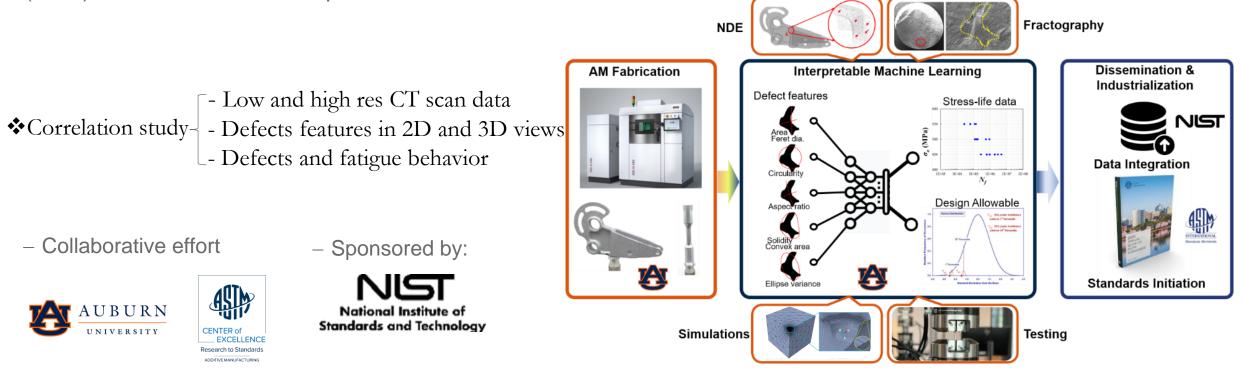
©.

- specifies the NDE and acceptance criteria for parts manufactured via PBF-LB
- This work item applies to radiographic examination and liquid penetrant

Discontinuity	Level 1	Level 2		
Surface or Internal				
Propagating discontinuities - cracks, solidification cracks, delamination cracks,				
Lack of Fusion or Incomplete Fusion - build layer separations, lateral, vertical, hatch, connected porosity, keyhole porosity, through wall separations	0	0		
Voids	2.5% of the material thickness in its longest dimension.	0.060"		
Inclusion	2.5% of the material thickness in its longest dimension	0.060"		
Contamination	0	0		
Trapped Powder	0	N/A		
Sub Surface Porosity				
Individual distinguishable	2.5% of the material	N/A		
from cracks – keyhole, gas porosity	thickness in diameter.			
Group more than two distinguishable from cracks – keyhole, gas porosity	3 individual pores greater than 2.5% of the material thickness in diameter	N/A		

	separated by 3 times the diameter of the largest pore.	
Surface Porosity		
Individual	0.060″	0.060″
Group	3 individual pores greater than 2.5% of the material thickness separated by 3	7 individual pores greater than 2.5% of the material thickness separated by 3
	times the diameter of the largest pore.	times the diameter of the largest pore

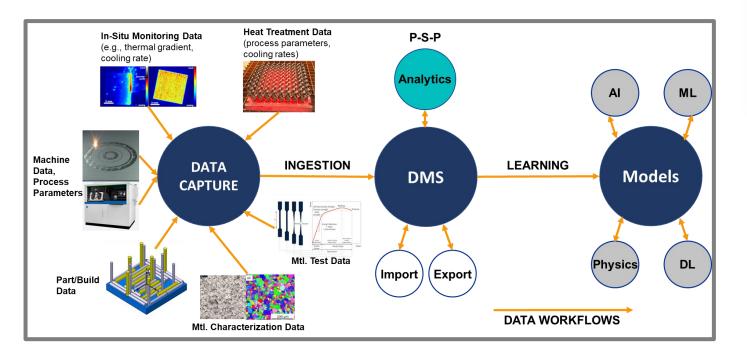
Latest updates to Work Item will align the criteria against F3572 for Part Criticality


NDE-Based qualification (Innovative Approaches to Qualification)

Determine the criticality of AM defects on the fatigue performance of AM materials

Develop a **data-driven framework** using computer vision and machine learning to model the effect of defects in support of non-destructive qualification

Initiate new **standards** and/or improve current standards for mechanical testing, non-destructive evaluation (NDE), data collection, and qualification



Data Management Initiatives – one of the key hurdles

Research to Standards ADDITIVE MANUFACTURING

- Supporting various programs, to generate **high-pedigree data**
- A pre-requisite for the development of high-quality simulation and machine learning packages for AM.

~700 data elements are being collected by Common Data Dictionary (CDD); ASTM F3490. ~1700 data elements are being collected by CMDS's Data Acquisition Template.

ed Dec. 15, 2021. Published March 2022. DOI: 10.1529

Download now!

Supported Programs

CMDS

ASTM INTERNATIONS

NDE-based Qualification

GAMAT

Final thoughts

IN PROCESS MONITORING

Great potential to support Structural Integrity for AM Applications but work still needed.

STANDARDS

'A rising tide lifts all boats...' Consensus through Standards will lead to best practices.

COLLABORATION

Alignment on the key topics will reduce duplication – allowing the research community to solve the problems

ASTM

- Continue to:
- Close Standards gaps
- Solve difficult technical problems
- Actively participate in funded calls

ASTM INTERNATIONAL UK

ASTM ICAM 2024 – Global Ecosystem Gathering

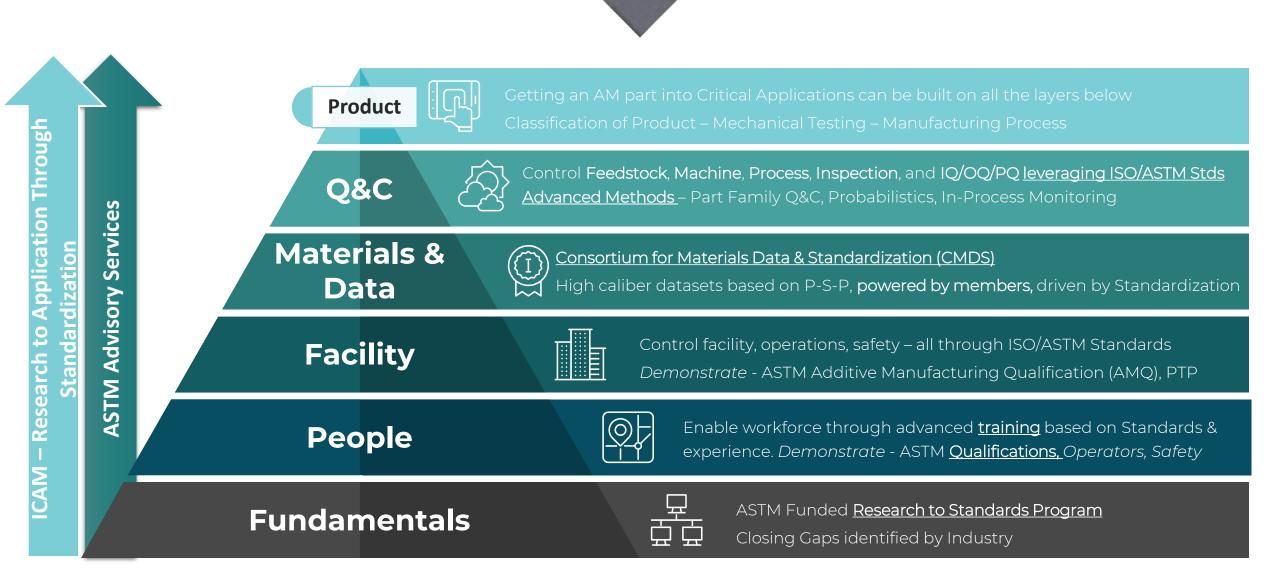
EXCELLENCE Research to Standards

ADDITIVE MANUFACTURING

Atlanta, GA | Oct 28 - Nov 1

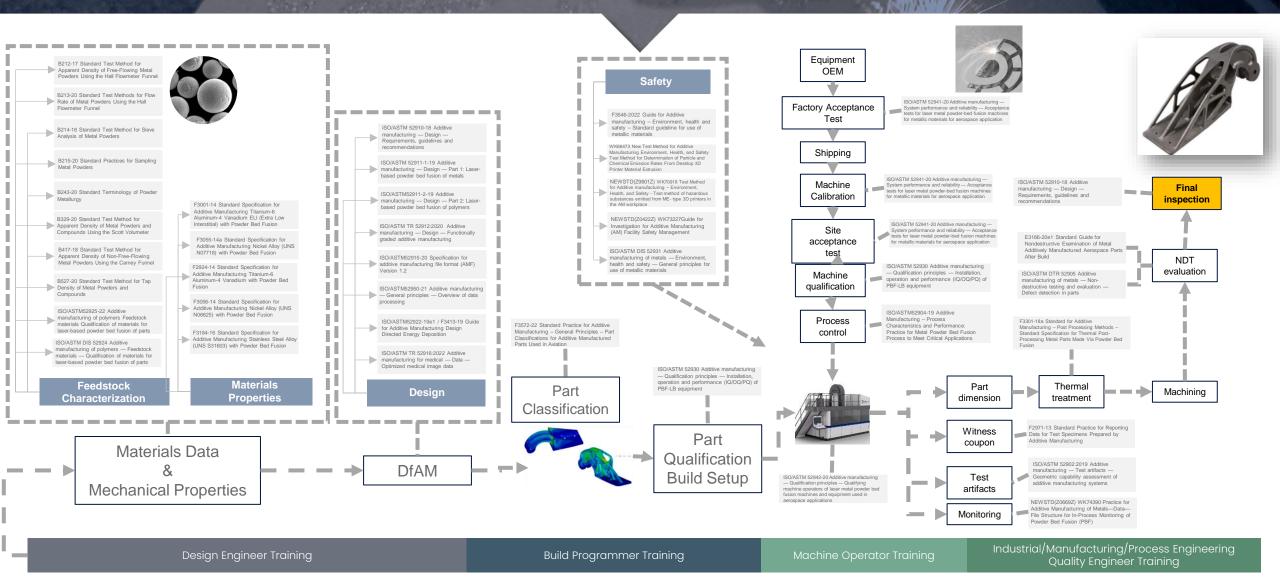
2024

International Conference on Advanced Manufacturing


- 6 days
- 4 short courses
- 26 symposia
- 8 keynotes
- 10 panels
- 700+ presentations

© ASTM International

The ASTM AM Division Product Pyramid

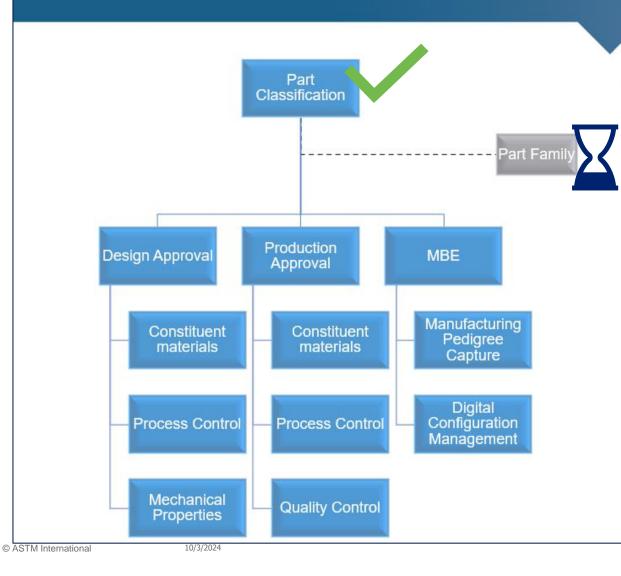


How to leverage standards– Mapping of ASTM/ISO Standards

EXCELLENCE **Research to Standards**

ADDITIVE MANUFACTURING

ASTM Aviation Standards Roadmap



ICAM2022

ADDITIVE MANUFACTURING

Next Steps

- Continue collaborating within Additive Manufacturing SDOs to further define downstream requirements
- NDI acceptance level which uses part classification
- IQ/OQ/PQ which uses part classification
- Collaborate with other ASTM committees to proliferate the standard and include F3572 document as a potential means of compliance
 - F37 LIGHT SPORT AIRCRAFT
 F38 UNMANNED AIRCRAFT SYSTEMS
 F39 AIRCRAFT SYSTEMS
 F44 GENERAL AVIATION AIRCRAFT In-work
 F46 AEROSPACE PERSONNEL
 - Charles Park ICAM 2022

Key Published Standards – ASTM F42/ISO TC261

Standard Guide for AM – General Principles – Requirements for Purchased AM Parts

Provides requirements for purchased parts from AM. Includes part ordering information, part geometry, tolerances, repair methods allowed, and other requirements to be considered Practice for Metal Powder Bed Fusion Process to Meet Critical Applications

Provides requirements applicable for *critical* components and mechanical test specimens using powder bed fusion (PBF) with both laser and electron beams System Performance and Reliability – Acceptance Tests for Laser Metal PBF Machine for Metallic Materials for Aerospace

Specifies requirements & test methods for qual & re-qual of Laser PBF machines. Can be used to verify machine features during inspection, or after maintenance & repair Qualifying Machine Operators of Laser Metal Powder Bed Machines and Equipment used in Aerospace Applications

Specifies requirements for operators of Laser Metal Powder Bed Machine and equipment for AM in Aerospace applications. Qualification tests to include theory & practical tests, and evidence of visual acuity Installation, Operation, and Performance Qualification for Production

This guide addresses IQ, OQ, and PQ issues directly related to the AM machine and connected equipment. Physical facility, personnel, process and material issues are included to the extent necessary to support machine qualification

AM Classification for Aerospace/Defense – ASTM F3572 Defining appropriate requirements

Published on Aug 5, 2022

- Alignment vs civilian (FAA, EASA) & military documents
- NAVAIR, AC25.571: Damaged Tolerance & Fatigue Evolution of Structure

"Without carefully defined part classes, the ability to accurately **gauge the consequence of failure** associated with additively manufactured aviation parts within and across programs, projects, and suppliers becomes exceedingly difficult..." Does not affect operation

No effect Negligible or Minor injury no effect **Examples** Serious or fatal injury Low Medium Consequence High of failure В А **Classifications**

AM Materials Data – Increasing Maturing

CENTER of EXCELLENCI Research to Standarc

>Accelerate adoption of AM technologies through standardization by:

- REQUIREMENTS & Best practices
- Terminology, Pedigree, Specimen Geometry, Build & Test Plans
- Identify Process-Structure-Property Relationships
- Equivalency/Combinability of new or existing data

GENERATE HIGH-PEDIGREE DATA

 Consortia-funded R&D projects create shared highpedigree "reference" material datasets to drive processbased material specifications

DATA MANAGEMENT System

- Secure, Access-controlled Data Management System
- Establishing/Following standard data principles (e.g., CDD, CMD, CDEF, FAIR*)

STANDARDS Development

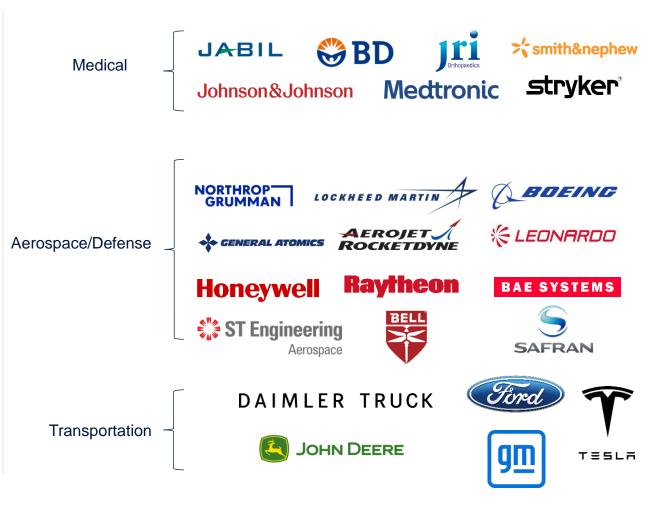
 Transferring lessons learned and consortium approved materials data to standardization committees

Consortium for Materials Data & Standardization (CMDS)

- CMDS enables collaboration on standardizing the requirements and best practices for generating highpedigree materials data
 - OEM/LSI End Users
 - AM Equipment Manufacturer
 - AM Contract Manufacturer/Supplier
 - AM Materials/Feedstock Producer

- AM Post-processing and Testing Service
 Provider
- AM Software
- AM Process/Health Monitoring

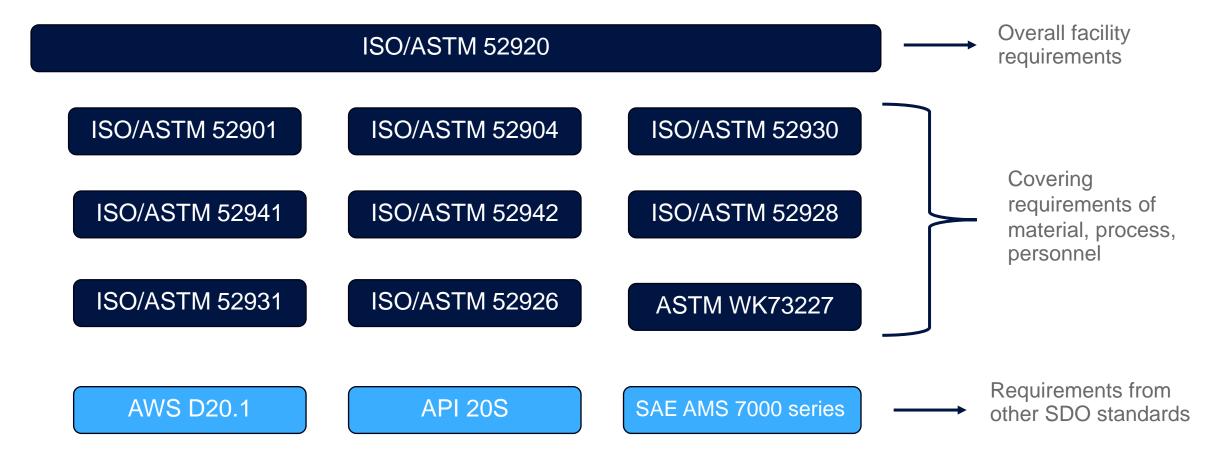
- Industrial Equipment Producer (e.g., Furnace, Powder Handling Equipment,...)
- Government Agencies and Laboratories (DoD, DOE, NASA, NIST)


AM Certification Committee (AMCC)

AM Certification Committee

- Created an AM certification committee including major OEMs
- Qualified AM supply chain with multiple industry approach
- Capture end-user requirements beyond standards
- The committee creates and oversee an audit program based on published international standards and industry best practices.

AM Certification Committee (24 members)



Standards for AM Certification Audit Criteria

EXCELLENCE

Additive Manufacturing Certification Audit Criteria

ASTM INTERNATIONAL Helping our world work better

Thank you for your attention!

Dr Martin White mwhite@astm.org

See you there!

International Conference on Advanced Manufacturing